next up previous contents
Next: About this document ... Up: eirt - Item Response Previous: Copyright   Contents


Index

ability
The ability estimates
ability estimates
Step 4 : the | The ability estimates
aggregated
The data aggregation
algorithms
The algorithm
all the data points from the plots
Step 4 : the
asymptote
The three parameters logistic | The item parameter
asymptote mean
The asymptote prior
asymptote weight
The asymptote prior
back
Assistant usage
bandwidth
The kernel smoothing factor
binary
The one parameter logistic | The two parameters logistic | The three parameters logistic
binary type
Binary type
cancel
Assistant usage
Chi-square
The test of fit | The test of local
classical test theory statistics
The classical test theory
converged
The estimation summary
correction key
Step 1 : the | Multiple choice type
correlation (discrimination)
The classical test theory
Cronbach's alpha
The classical test theory | The classical test theory
data source
The estimation summary
data type
Step 2 : the
degree of freedom
The test of fit | The test of local
delete a sheet
The report
difficulties
The classical test theory
difficulty
The one parameter logistic
discrimination
The one parameter logistic
discriminations
The classical test theory
display language
Installation | The language
edit
The report
eirt
Assistant usage | The report | Settings
estimation methode
The estimation summary
first middle point
The first middle point
graded
The nominal response model | The nominal response model | The graded response model
graded response model
The nominal response model | The graded response model
graded type
Graded type
guessing
The three parameters logistic
help
Assistant usage
ICC
The item and option | All the data points
ignored
The estimation summary
information functions
The information functions | The information functions | All the data points
installation language
Installation
installation program
Installation
item and option characteristic curves
The item and option
item correlation
The classical test theory
item labels
Step 1 : the
item means
The classical test theory
item parameters
The item parameters
kernel estimator
The kernel estimator
last middle point
The last middle point
macro activation
Installation
mean (difficulty)
The classical test theory
minimal
Graded type
missing values
Step 2 : the
model
Step 3 : the | The estimation summary
multiple choice
The nominal response model
multiple choice type
Multiple choice type
next
Assistant usage
nominal response model
The nominal response model
number of item
The classical test theory
number of iteration
The number of EM | The number of Newton
number of missing value
The classical test theory
number of quadrature
The number of quadrature
number of subject
The classical test theory
OCC
The item and option | All the data points
ok
Settings
one parameter logistic model
The one parameter logistic
p-value
The test of fit | The test of local
penalization
The penalization smoothing factor
penalized maximum marginal likelihood estimator
The penalized maximum marginal
precision
The precision
prior distributions
The priors
quadratures
The quadratures
s.e.
The item parameter | The ability estimates
save
The report
score mean
The classical test theory
score standard deviation
The classical test theory
selection
Step 1 : the
settings
Installation | Settings | Settings
slope
The one parameter logistic | The two parameters logistic | The three parameters logistic | The nominal response model | The graded response model | The item parameter
slope mean
The slope prior
slope standard deviation
The slope prior
smoothing parameter
The estimation summary
standard deviation
The classical test theory
standard error
The item parameter | The ability estimates
standard errors
The standard errors
start the assistant
Assistant usage
subject labels
Step 1 : the
succes
Binary type
test of fit
The test of fit
test of local independance
Step 4 : the | The test of local
three parameters logistic model
The three parameters logistic
threshold
The one parameter logistic | The two parameters logistic | The three parameters logistic | The nominal response model | The graded response model | The item parameter
threshold mean
The threshold prior
threshold standard deviation
The threshold prior
tools
Assistant usage | Settings
two parameters logistic model
The two parameters logistic



2011-09-23